0732. 我的日程安排表 III

0732. 我的日程安排表 III #

  • 标签:设计、线段树、二分查找、有序集合
  • 难度:困难

题目大意 #

要求:实现一个 MyCalendarThree 类来存放你的日程安排,你可以一直添加新的日程安排。

日程可以用一对整数 $start$ 和 $end$ 表示,这里的时间是半开区间,即 $[start, end)$,实数 $x$ 的范围为 $start \le x < end$。

MyCalendarThree 类:

  • MyCalendarThree() 初始化对象。
  • int book(int start, int end) 返回一个整数 k,表示日历中存在的 k 次预订的最大值。

说明

  • k 次预定:当 k 个日程安排有一些时间上的交叉时(例如 k 个日程安排都在同一时间内),就会产生 k 次预订。
  • $0 \le start < end \le 10^9$
  • 每个测试用例,调用 book 函数最多不超过 400 次。

示例

  • 示例 1:
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
输入
["MyCalendarThree", "book", "book", "book", "book", "book", "book"]
[[], [10, 20], [50, 60], [10, 40], [5, 15], [5, 10], [25, 55]]
输出
[null, 1, 1, 2, 3, 3, 3]

解释
MyCalendarThree myCalendarThree = new MyCalendarThree();
myCalendarThree.book(10, 20); // 返回 1 第一个日程安排可以预订并且不存在相交所以最大 k 次预订是 1 次预订
myCalendarThree.book(50, 60); // 返回 1 第二个日程安排可以预订并且不存在相交所以最大 k 次预订是 1 次预订
myCalendarThree.book(10, 40); // 返回 2 第三个日程安排 [10, 40) 与第一个日程安排相交所以最大 k 次预订是 2 次预订
myCalendarThree.book(5, 15); // 返回 3 剩下的日程安排的最大 k 次预订是 3 次预订
myCalendarThree.book(5, 10); // 返回 3
myCalendarThree.book(25, 55); // 返回 3

解题思路 #

思路 1:线段树 #

这道题可以使用线段树来做。

因为区间的范围是 $[0, 10^9]$,普通数组构成的线段树不满足要求。需要用到动态开点线段树。

  • 构建一棵线段树。每个线段树的节点类存储当前区间中保存的日程区间个数。

  • book 方法中,在线段树中更新 [start, end - 1] 的交叉日程区间个数,即令其区间值整体加 1

  • 然后从线段树中查询区间 $[0, 10^9]$ 上保存的交叉日程区间个数,并返回。

思路 1:代码 #

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
# 线段树的节点类
class SegTreeNode:
    def __init__(self, left=-1, right=-1, val=0, lazy_tag=None, leftNode=None, rightNode=None):
        self.left = left                            # 区间左边界
        self.right = right                          # 区间右边界
        self.mid = left + (right - left) // 2
        self.leftNode = leftNode                    # 区间左节点
        self.rightNode = rightNode                  # 区间右节点
        self.val = val                              # 节点值(区间值)
        self.lazy_tag = lazy_tag                    # 区间问题的延迟更新标记
        
        
# 线段树类
class SegmentTree:
    # 初始化线段树接口
    def __init__(self, function):
        self.tree = SegTreeNode(0, int(1e9))
        self.function = function                    # function 是一个函数,左右区间的聚合方法
            
    # 单点更新,将 nums[i] 更改为 val
    def update_point(self, i, val):
        self.__update_point(i, val, self.tree)
    
    # 区间更新,将区间为 [q_left, q_right] 上的元素值修改为 val
    def update_interval(self, q_left, q_right, val):
        self.__update_interval(q_left, q_right, val, self.tree)
        
    # 区间查询,查询区间为 [q_left, q_right] 的区间值
    def query_interval(self, q_left, q_right):
        return self.__query_interval(q_left, q_right, self.tree)
    
    # 获取 nums 数组接口:返回 nums 数组
    def get_nums(self, length):
        nums = [0 for _ in range(length)]
        for i in range(length):
            nums[i] = self.query_interval(i, i)
        return nums
    
    
    # 以下为内部实现方法
    
    # 单点更新,将 nums[i] 更改为 val。node 节点的区间为 [node.left, node.right]
    def __update_point(self, i, val, node):
        if node.left == node.right:
            node.val = val                          # 叶子节点,节点值修改为 val
            return
        
        if i <= node.mid:                           # 在左子树中更新节点值
            self.__update_point(i, val, node.leftNode)
        else:                                       # 在右子树中更新节点值
            self.__update_point(i, val, node.rightNode)
        self.__pushup(node)                         # 向上更新节点的区间值
    
    # 区间更新
    def __update_interval(self, q_left, q_right, val, node):
        if node.left >= q_left and node.right <= q_right:  # 节点所在区间被 [q_left, q_right] 所覆盖
            if node.lazy_tag is not None:
                node.lazy_tag += val                # 将当前节点的延迟标记增加 val
            else:
                node.lazy_tag = val                 # 将当前节点的延迟标记增加 val
            node.val += val                         # 当前节点所在区间增加 val
            return
        if node.right < q_left or node.left > q_right:  # 节点所在区间与 [q_left, q_right] 无关
            return 0
    
        self.__pushdown(node)                       # 向下更新节点所在区间的左右子节点的值和懒惰标记
    
        if q_left <= node.mid:                      # 在左子树中更新区间值
            self.__update_interval(q_left, q_right, val, node.leftNode)
        if q_right > node.mid:                      # 在右子树中更新区间值
            self.__update_interval(q_left, q_right, val, node.rightNode)
            
        self.__pushup(node)
    
    # 区间查询,在线段树的 [left, right] 区间范围中搜索区间为 [q_left, q_right] 的区间值
    def __query_interval(self, q_left, q_right, node):
        if node.left >= q_left and node.right <= q_right:   # 节点所在区间被 [q_left, q_right] 所覆盖
            return node.val                         # 直接返回节点值
        if node.right < q_left or node.left > q_right:  # 节点所在区间与 [q_left, q_right] 无关
            return 0
                                  
        self.__pushdown(node)                       # 向下更新节点所在区间的左右子节点的值和懒惰标记
        
        res_left = 0                                # 左子树查询结果
        res_right = 0                               # 右子树查询结果
        if q_left <= node.mid:                      # 在左子树中查询
            res_left = self.__query_interval(q_left, q_right, node.leftNode)
        if q_right > node.mid:                      # 在右子树中查询
            res_right = self.__query_interval(q_left, q_right, node.rightNode)
        return self.function(res_left, res_right)   # 返回左右子树元素值的聚合计算结果

    # 向上更新 node 节点区间值,节点的区间值等于该节点左右子节点元素值的聚合计算结果
    def __pushup(self, node):
        if node.leftNode and node.rightNode:
            node.val = self.function(node.leftNode.val, node.rightNode.val)
    
    # 向下更新 node 节点所在区间的左右子节点的值和懒惰标记
    def __pushdown(self, node):
        if node.leftNode is None:
            node.leftNode = SegTreeNode(node.left, node.mid)
        if node.rightNode is None:
            node.rightNode = SegTreeNode(node.mid + 1, node.right)
            
        lazy_tag = node.lazy_tag
        if node.lazy_tag is None:
            return
            
        if node.leftNode.lazy_tag is not None:
            node.leftNode.lazy_tag += lazy_tag      # 更新左子节点懒惰标记
        else:
            node.leftNode.lazy_tag = lazy_tag       # 更新左子节点懒惰标记
        node.leftNode.val += lazy_tag               # 左子节点区间增加 lazy_tag
        
        if node.rightNode.lazy_tag is not None:
            node.rightNode.lazy_tag += lazy_tag     # 更新右子节点懒惰标记
        else:
            node.rightNode.lazy_tag = lazy_tag      # 更新右子节点懒惰标记
        node.rightNode.val += lazy_tag              # 右子节点区间增加 lazy_tag
        
        node.lazy_tag = None                        # 更新当前节点的懒惰标记


class MyCalendarThree:

    def __init__(self):
        self.STree = SegmentTree(lambda x, y: max(x, y))


    def book(self, start: int, end: int) -> int:
        self.STree.update_interval(start, end - 1, 1)
        return self.STree.query_interval(0, int(1e9))



# Your MyCalendarThree object will be instantiated and called as such:
# obj = MyCalendarThree()
# param_1 = obj.book(start,end)
本站总访问量  次  |  您是本站第  位访问者