0973. 最接近原点的 K 个点
大约 2 分钟
0973. 最接近原点的 K 个点
- 标签:几何、数组、数学、分治、快速选择、排序、堆(优先队列)
- 难度:中等
题目链接
题目大意
给定一个由由平面上的点组成的列表 points
,再给定一个整数 K
。
要求:从中找出 K
个距离原点 (0, 0)
最近的点。(这里,平面上两点之间的距离是欧几里德距离。)可以按任何顺序返回答案。除了点坐标的顺序之外,答案确保是唯一的。
解题思路
- 使用二叉堆构建优先队列,优先级为距离原点的距离。此时堆顶元素即为距离原点最近的元素。
- 将堆顶元素加入到答案数组中,进行出队操作。时间复杂度 。
- 出队操作:交换堆顶元素与末尾元素,将末尾元素已移出堆。继续调整大顶堆。
- 不断重复第 2 步,直到
K
次结束。
代码
class Heapq:
def compare(self, a, b):
dist_a = a[0] * a[0] + a[1] * a[1]
dist_b = b[0] * b[0] + b[1] * b[1]
if dist_a < dist_b:
return -1
elif dist_a == dist_b:
return 0
else:
return 1
# 堆调整方法:调整为小顶堆
def heapAdjust(self, nums: [int], index: int, end: int):
left = index * 2 + 1
right = left + 1
while left <= end:
# 当前节点为非叶子结点
max_index = index
if self.compare(nums[left], nums[max_index]) == -1:
max_index = left
if right <= end and self.compare(nums[right], nums[max_index]) == -1:
max_index = right
if index == max_index:
# 如果不用交换,则说明已经交换结束
break
nums[index], nums[max_index] = nums[max_index], nums[index]
# 继续调整子树
index = max_index
left = index * 2 + 1
right = left + 1
# 将数组构建为二叉堆
def heapify(self, nums: [int]):
size = len(nums)
# (size - 2) // 2 是最后一个非叶节点,叶节点不用调整
for i in range((size - 2) // 2, -1, -1):
# 调用调整堆函数
self.heapAdjust(nums, i, size - 1)
# 入队操作
def heappush(self, nums: list, value):
nums.append(value)
size = len(nums)
i = size - 1
# 寻找插入位置
while (i - 1) // 2 >= 0:
cur_root = (i - 1) // 2
# value 大于当前根节点,则插入到当前位置
if self.compare(nums[cur_root], value) == -1:
break
# 继续向上查找
nums[i] = nums[cur_root]
i = cur_root
# 找到插入位置或者到达根位置,将其插入
nums[i] = value
# 出队操作
def heappop(self, nums: list) -> int:
size = len(nums)
nums[0], nums[-1] = nums[-1], nums[0]
# 得到最小值(堆顶元素)然后调整堆
top = nums.pop()
if size > 0:
self.heapAdjust(nums, 0, size - 2)
return top
# 升序堆排序
def heapSort(self, nums: [int]):
self.heapify(nums)
size = len(nums)
for i in range(size):
nums[0], nums[size - i - 1] = nums[size - i - 1], nums[0]
self.heapAdjust(nums, 0, size - i - 2)
return nums
class Solution:
def kClosest(self, points: List[List[int]], k: int) -> List[List[int]]:
heap = Heapq()
queue = []
for point in points:
heap.heappush(queue, point)
res = []
for i in range(k):
res.append(heap.heappop(queue))
return res