1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
|
class Solution:
def diagonalBinarySearch(self, matrix, diagonal, target):
left = 0
right = diagonal
while left < right:
mid = left + (right - left) // 2
if matrix[mid][mid] < target:
left = mid + 1
else:
right = mid
return left
def rowBinarySearch(self, matrix, begin, cols, target):
left = begin
right = cols
while left < right:
mid = left + (right - left) // 2
if matrix[begin][mid] < target:
left = mid + 1
elif matrix[begin][mid] > target:
right = mid - 1
else:
left = mid
break
return begin <= left <= cols and matrix[begin][left] == target
def colBinarySearch(self, matrix, begin, rows, target):
left = begin + 1
right = rows
while left < right:
mid = left + (right - left) // 2
if matrix[mid][begin] < target:
left = mid + 1
elif matrix[mid][begin] > target:
right = mid - 1
else:
left = mid
break
return begin <= left <= rows and matrix[left][begin] == target
def searchMatrix(self, matrix: List[List[int]], target: int) -> bool:
rows = len(matrix)
if rows == 0:
return False
cols = len(matrix[0])
if cols == 0:
return False
min_val = min(rows, cols)
index = self.diagonalBinarySearch(matrix, min_val - 1, target)
if matrix[index][index] == target:
return True
for i in range(index + 1):
row_search = self.rowBinarySearch(matrix, i, cols - 1, target)
col_search = self.colBinarySearch(matrix, i, rows - 1, target)
if row_search or col_search:
return True
return False
|